$$
\left\langle\mathcal{R}_{\mathbf{k}_{1}} \cdots \mathcal{R}_{\mathbf{k}_{N}}\right\rangle
$$

Beyond the Bispectrum: N -point Functions for large N Louis Leblond Perimeter Institute

arXiv:1010.4565, with Enrico Pajer

Majority of theoretical studies have focused on the bispectrum

$$
\left\langle\mathcal{R}_{\mathbf{k}_{1}} \mathcal{R}_{\mathbf{k}_{\mathbf{2}}} \mathcal{R}_{\mathbf{k}_{\mathbf{3}}}\right\rangle=(2 \pi)^{3} \delta^{3}\left(\mathbf{k}_{\mathbf{1}}+\mathbf{k}_{\mathbf{2}}+\mathbf{k}_{\mathbf{3}}\right) B\left(k_{i}\right)
$$

One of the theme of this NG workshop is lets go beyond local bispectra
e.g
$\tau_{N L}$
Scale
dependence

Here lets go way beyond.....
Report a model where we have a good handle on N -point functions for N of order 10 to 25 .

$$
\left\langle\mathcal{R}_{\mathbf{k}_{1}} \cdots \mathcal{R}_{\mathbf{k}_{N}}\right\rangle=(2 \pi)^{3} \delta^{3}\left(\sum_{i}^{N} \mathbf{k}_{\mathbf{i}}\right) B_{N}\left(\mathbf{k}_{\mathbf{i}}\right)
$$

This is a nice toy model to learn about
This is a function of 3N-6 variables the structure of higher point correlation functions.

The challenge for theorists

* The main bottleneck for predicting the standard model background at the LHC is coming from the theorist's ability to compute higher point function in gauge theories.
* Usually quite hard to calculate beyond the power spectrum in theories of inflation mostly because of gravity.
* Many bispectra are known, some trispectra (a lot of work) are out there and essentially nothing beyond.

> By decoupling gravity in a particular model of inflation we will obtain all correlation functions at tree level up to N of order 10,12 or even ~ 25 !

Slow-roll Trispectrum
 $\left\langle\mathcal{R}_{\mathbf{k}_{1}} \mathcal{R}_{\mathbf{k}_{2}} \mathcal{R}_{\mathbf{k}_{3}} \mathcal{R}_{\mathbf{k}_{4}}\right\rangle$

Seery, Lidsey, Sloth
Arroja, Koyama
Seery, Sloth, Vernizzi

Slow-roll Trispectrum

$\left\langle\mathcal{R}_{\mathbf{k}_{1}} \mathcal{R}_{\mathbf{k}_{2}} \mathcal{R}_{\mathbf{k}_{3}} \mathcal{R}_{\mathbf{k}_{4}}\right\rangle$

Seery, Lidsey, Sloth
Arroja, Koyama
Seery, Sloth, Vernizzi

Slow-roll Trispectrum
 $\left\langle\mathcal{R}_{\mathbf{k}_{1}} \mathcal{R}_{\mathbf{k}_{2}} \mathcal{R}_{\mathbf{k}_{3}} \mathcal{R}_{\mathbf{k}_{4}}\right\rangle$

$S_{4}=\int a^{3}\left(-\frac{1}{24} V_{, \alpha \beta \gamma \delta} \delta \phi^{\alpha} \delta \phi^{\beta} \delta \phi^{\gamma} \delta \phi^{\delta}+\frac{1}{2 a^{4}} \partial_{(i} \beta_{2 j)} \partial_{i} \beta_{2 j}\right.$

$$
+\frac{1}{2 a^{4}} \partial_{j} \vartheta_{1} \partial_{j} \delta \phi^{\alpha} \partial_{m} \vartheta_{1} \partial_{m} \delta \phi_{\alpha}-\frac{1}{a^{2}} \delta \dot{\phi}^{\alpha}\left(\partial_{j} \vartheta_{2}+\beta_{2 j}\right) \partial_{j} \delta \phi_{\alpha}
$$

$$
+\left(\alpha_{1}^{2} \alpha_{2}-\frac{1}{2} \alpha_{2}^{2}\right)\left(-6 H^{2}+\dot{\phi}^{\alpha} \dot{\phi}_{\alpha}\right)+\frac{\alpha_{1}}{2}\left[-\frac{1}{3} V_{, \alpha \beta \gamma} \delta \phi^{\alpha} \delta \phi^{\beta} \delta \phi^{\gamma}-2 \alpha_{1}^{2} V_{, \alpha} \delta \phi^{\alpha}\right.
$$

$$
+\alpha_{1}\left(-\frac{1}{a^{2}} \partial_{i} \delta \phi^{\alpha} \partial_{i} \delta \phi_{\alpha}-V_{, \alpha \beta} \delta \phi^{\alpha} \delta \phi^{\beta}\right)
$$

$$
-\frac{2}{a^{4}} \partial_{i} \partial_{j} \vartheta_{2} \partial_{i} \partial_{j} \vartheta_{1}+\frac{2}{a^{4}} \partial^{2} \vartheta_{2} \partial^{2} \vartheta_{1}-\frac{2}{a^{4}} \partial_{i} \beta_{2 j} \partial_{i} \partial_{j} \vartheta_{1}
$$

$$
\begin{equation*}
\left.\left.+\frac{2}{a^{2}} \dot{\phi}^{\alpha}\left(\partial_{j} \vartheta_{2}+\beta_{2 j}\right) \partial_{j} \delta \phi_{\alpha}+\frac{2}{a^{2}} \delta \dot{\phi}^{\alpha} \partial_{j} \vartheta_{1} \partial_{j} \delta \phi_{\alpha}\right]\right) \tag{36}
\end{equation*}
$$

Seery, Lidsey, Sloth
Arroja, Koyama
Seery, Sloth, Vernizzi
from astro-ph / 0610210

Slow-roll Trispectrum

$\left\langle\mathcal{R}_{\mathbf{k}_{1}} \mathcal{R}_{\mathbf{k}_{2}} \mathcal{R}_{\mathbf{k}_{3}} \mathcal{R}_{\mathbf{k}_{4}}\right\rangle$

Seery, Lidsey, Sloth
Arroja, Koyama
Seery, Sloth, Vernizzi

Slow-roll Trispectrum
 $\left\langle\mathcal{R}_{\mathbf{k}_{1}} \mathcal{R}_{\mathbf{k}_{2}} \mathcal{R}_{\mathbf{k}_{3}} \mathcal{R}_{\mathbf{k}_{4}}\right\rangle$

Seery, Lidsey, Sloth
Arroja, Koyama
Seery, Sloth, Vernizzi

Leblond, NG2011, MCTP

Slow-roll Trispectrum

$\left\langle\mathcal{R}_{\mathbf{k}_{1}} \mathcal{R}_{\mathbf{k}_{2}} \mathcal{R}_{\mathbf{k}_{3}} \mathcal{R}_{\mathbf{k}_{4}}\right\rangle$

$$
\begin{align*}
&\left\langle\varphi_{\mathbf{k} 1} \varphi_{\mathbf{k} \mathbf{2}} \varphi_{\mathbf{k}} \varphi_{\mathbf{k}_{4}}\right\rangle_{*}^{\mathrm{GE}}=(2 \pi)^{3} \delta\left(\sum_{a} \mathbf{k}_{a}\right) \frac{4 H_{*}^{6}}{\prod_{a}\left(2 k_{k}^{3}\right)} \\
& \times \sum_{s}\left[\frac{1}{k_{12}^{3} s_{i j}^{s}} \mathbf{k}_{12}\right) \epsilon_{i m}^{s}\left(\mathbf{k}_{34}\right) k_{1}^{i} k_{2}^{j} k_{3}^{l} k_{4}^{m} \cdot\left(\mathcal{I}_{1234}+\mathcal{I}_{3412}\right) \\
&+\frac{1}{k_{13}^{3}} \epsilon_{i j}^{s}\left(\mathbf{k}_{13}\right) \epsilon_{l m}^{s}\left(\mathbf{k}_{24}\right) k_{1}^{i} k_{3}^{j} k_{2}^{l} k_{4}^{m} \cdot\left(\mathcal{I}_{1324}+\mathcal{I}_{2413}\right) \\
&+\frac{1}{\left.k_{14}^{3} \epsilon_{i j}^{s}\left(\mathbf{k}_{14}\right) \epsilon_{l m}^{s}\left(\mathbf{k}_{23}\right) k_{1}^{i} k_{4}^{j} k_{2}^{l} k_{3}^{m} \cdot\left(\mathcal{I}_{1423}+\mathcal{I}_{2314}\right)\right] .} \tag{2.25}
\end{align*}
$$

Seery, Lidsey, Sloth
Arroja, Koyama
Seery, Sloth, Vernizzi
from 0811.3934

Slow-roll Trispectrum

$$
\begin{align*}
\left\langle\varphi_{\mathbf{k}_{1}} \varphi_{\mathbf{k}_{2}} \varphi_{\mathbf{k}_{3}} \varphi_{\mathbf{k}_{4}}\right)_{*}^{\mathrm{GE}} & =(2 \pi)^{3} \delta\left(\sum_{a} \mathbf{k}_{a}\right) \frac{4 H_{*}^{6}}{\prod_{a}\left(2 k_{a}^{3}\right)} \\
\times & \sum_{s}\left[\frac{1}{k_{12}^{3}} \epsilon_{i j}^{s}\left(\mathbf{k}_{12}\right) \epsilon_{l m}^{s}\left(\mathbf{k}_{34}\right) k_{1}^{i} k_{2}^{j} k_{3}^{l} k_{4}^{m} \cdot\left(\mathcal{I}_{1234}+\mathcal{I}_{3412}\right)\right. \\
& +\frac{1}{k_{13}^{3}} \epsilon_{i j}^{s}\left(\mathbf{k}_{13}\right) \epsilon_{l m}^{s}\left(\mathbf{k}_{24}\right) k_{1}^{i} k_{3}^{j} k_{2}^{l} k_{4}^{m} \cdot\left(\mathcal{I}_{1324}+\mathcal{I}_{2413}\right) \\
& \left.+\frac{1}{k_{14}^{3}} \epsilon_{i j}^{s}\left(\mathbf{k}_{14}\right) \epsilon_{l m}^{s}\left(\mathbf{k}_{23}\right) k_{1}^{i} k_{4}^{j} k_{2}^{l} k_{3}^{m} \cdot\left(\mathcal{I}_{1423}+\mathcal{I}_{2314}\right)\right] . \tag{2.25}\\
\mathcal{I}_{1234}+ & \mathcal{I}_{3412}=\frac{k_{1}+k_{2}}{a_{34}^{2}}\left[\frac{1}{2}\left(a_{34}+k_{12}\right)\left(a_{34}^{2}-2 b_{34}\right)+k_{12}^{2}\left(k_{3}+k_{4}\right)\right]+(1,2 \leftrightarrow 3,4) \\
& +\frac{k_{1} k_{2}}{k_{t}}\left[\frac{b_{34}}{a_{34}}-k_{12}+\frac{k_{12}}{a_{12}}\left(k_{3} k_{4}-k_{12} \frac{b_{34}}{a_{34}}\right)\left(\frac{1}{k_{t}}+\frac{1}{a_{12}}\right)\right]+(1,2 \leftrightarrow 3,4) \\
& \quad-\frac{k_{12}}{a_{12} a_{34} k_{t}}\left[b_{12} b_{34}+2 k_{12}^{2}\left(\prod_{a} k_{a}\right)\left(\frac{1}{k_{t}^{2}}+\frac{1}{a_{12} a_{34}}+\frac{k_{12}}{k_{t} a_{12} a_{34}}\right)\right], \tag{2.26}
\end{align*}
$$

where we have used $k_{12}=k_{34}$ and we have defined

$$
\begin{equation*}
a_{a b} \equiv k_{a}+k_{b}+k_{a b}, \quad b_{a b} \equiv\left(k_{a}+k_{b}\right) k_{a b}+k_{a} k_{b} . \tag{2.27}
\end{equation*}
$$

Seery, Lidsey, Sloth
Arroja, Koyama
Seery, Sloth, Vernizzi
from 0811.3934

Resonant Inflationary Models

Slow-roll potential

$V(\phi)=V_{\mathrm{sr}}(\phi)+\Lambda^{4} \cos (\phi / f)$

Amplitude

$$
b \ll 1
$$

Frequency

$$
\alpha \gg 1
$$

Chen, Easther, Lim
Flauger, Pajer

Barnaby, Peloso

Resonant Inflationary Models

	Amplitude $b \ll 1$
Slow-roll potential Modulation	Frequency
$V(\phi)$	$\alpha \gg 1$
$\longrightarrow \phi$	Chen, Easther, Lim Flauger, Pajer
	Barnaby, Peloso

Resonant Inflationary Models

Amplitude

$$
b \ll 1
$$

Slow-roll potential
Modulation

$V(\phi)=V_{\mathrm{sr}}(\phi)+\Lambda^{4} \cos (\phi / f)$

Frequency

$$
\alpha \gg 1
$$

Chen, Easther, Lim
Flauger, Pajer

Barnaby, Peloso

$$
\text { Results } \quad\left\langle\mathcal{R}_{\mathbf{k}_{1}} \cdots \mathcal{R}_{\mathbf{k}_{N} N}{ }^{\text {single vertex }}=(2 \pi)^{3} \delta^{3}\left(\sum_{i}^{N} \mathbf{k}_{i}\right) A_{N} B_{N}\left(k_{i}\right)\right.
$$

amplitude

$$
\begin{aligned}
& A_{N} \equiv(-)^{N} \frac{3 b \sqrt{2 \pi}}{2} \alpha^{2 N-9 / 2}\left(2 \pi^{2} \Delta_{R}^{2}\right)^{N-1} \\
& B_{N}\left(k_{i}\right) \equiv \frac{1}{K^{N-3} \prod_{i} k_{i}^{2}} \sin \left(\frac{\phi_{K}}{f}\right)
\end{aligned}
$$

shape
leading

$$
K=\sum_{i} k_{i}
$$

Signal oscillates

$$
\phi_{K}=\phi_{*}-\sqrt{2 \epsilon_{*}} \ln K / k_{*}
$$

Essentially no overlap to most other shape.
only a function of N variable (norms) and not 3N-6
as one would naively expect.

$$
\text { ReSults }\left\langle\mathcal{R}_{\mathbf{k}_{1}} \cdots \mathcal{R}_{\mathbf{k}_{N}}\right\rangle^{\text {single vertex }}=(2 \pi)^{3} \delta^{3}\left(\sum_{i}^{N} \mathbf{k}_{i}\right) A_{N} B_{N}\left(k_{i}\right)
$$

amplitude

$$
A_{N} \equiv(-)^{N} \frac{3 b \sqrt{2 \pi}}{2} \alpha^{2 N-9 / 2}\left(2 \pi^{2} \Delta_{R}^{2}\right)^{N-1}
$$

shape

$$
K=\sum_{i} k_{i}
$$

Signal oscillates

$$
\phi_{K}=\phi_{*}-\sqrt{2 \epsilon_{*}} \ln K / k_{*}
$$

Essentially no overlap to most other shape.
only a function of N variable (norms) and not 3N-6
as one would naively expect.

$$
\text { Results } \quad\left\langle\mathcal{R}_{\mathbf{k}_{\mathbf{1}}} \cdots \mathcal{R}_{\mathbf{k}_{\mathrm{N}}}\right\rangle^{\text {single vertex }}=(2 \pi)^{3} \delta^{3}\left(\sum_{i}^{N} \mathbf{k}_{i}\right) A_{N} B_{N}\left(k_{i}\right)
$$

amplitude

$$
\begin{aligned}
& A_{N} \equiv(-)^{N} \frac{3 b \sqrt{2 \pi}}{2} \alpha^{2 N-9 / 2}\left(2 \pi^{2} \Delta_{R}^{2}\right)^{N-1} \\
& B_{N}\left(k_{i}\right) \equiv \frac{1}{K^{N-3} \prod_{i} k_{i}^{2}} {\left[\sin \left(\frac{\phi_{K}}{f}\right)-\frac{1}{\alpha} \cos \left(\frac{\phi_{K}}{f}\right) \sum_{j, i} \frac{k_{i}}{k_{j}}+\mathcal{O}\left(\alpha^{-2}\right)\right] } \\
& \text { leading }+1 / \alpha
\end{aligned}
$$

shape

$$
K=\sum_{i} k_{i}
$$

Signal oscillates

$$
\phi_{K}=\phi_{*}-\sqrt{2 \epsilon_{*}} \ln K / k_{*}
$$

Essentially no overlap to most other shape.
only a function of N variable (norms) and not 3N-6
as one would naively expect.

Decoupling

Claim: All single field models of inflation with parametrically large NG admit a decoupling limit in which

Self-interactions of the field ϕ dominate over all gravitational interactions.

$$
g_{\mu \nu} \rightarrow \quad h_{i j}+\delta \phi
$$

For Resonant
$V(\phi)=3 \alpha b f^{2} H^{2} \cos (\phi / f)$

$$
\mathcal{R}=-\frac{H}{\dot{\phi}} \delta \phi
$$

$$
\frac{V^{(N)}}{N!} \delta \phi(x)^{N}
$$

$$
\begin{aligned}
& \qquad\left\langle\mathcal{R}_{\mathbf{k}_{1}} \cdots \mathcal{R}_{\mathbf{k}_{N}}\right\rangle^{\text {single vertex }} \quad\left\langle\mathcal{R}^{5}\right\rangle \rightarrow \\
& B_{N_{N}\left(k_{i}\right) \equiv} \frac{1}{K^{N-3} \Pi_{i} k_{i}^{2}}\left[\sin \left(\frac{\phi_{K}}{f}\right)-\frac{1}{\alpha} \cos \left(\frac{\phi_{K}}{f}\right) \sum_{j, i} \frac{k_{i}}{k_{j}}+\mathcal{O}\left(\alpha^{-2}\right)\right] \\
& \text { Limit of validity }
\end{aligned}
$$

* Neglecting Gravity
* Multi-vertex diagrams.

* Special choice of momenta.

Any single field model of inflation with large NG decouples

e.g. DBI inflation

But for most of the models, there are
Many contact terms

DBI

Chen, Huang, Shiu
Arroja, Mizuno, Koyama, Tanaka
L.L. Shandera

Any single field model of inflation with large NG decouples

e.g. DBI inflation

But for most of the models, there are
Many contact terms

Chen, Huang, Shiu
Arroja, Mizuno, Koyama, Tanaka
L.L. Shandera

Any single field model of inflation with large NG decouples

e.g. DBI inflation

But for most of the models, there are
Many contact terms

Resonant

Chen, Huang, Shiu
Arroja, Mizuno, Koyama, Tanaka
L.L. Shandera

Multi-vertex diagrams

Starting with 4-pt, there exists multi-vertex diagrams.

they are subleading (more b and suppressed in α) but there is many of them
really a lot of terms

For $\begin{gathered}\alpha \sim 100 \text { and } \\ b \sim 0.1\end{gathered}$
we estimate that the SUM of all multivertex contribute less than 20% for

$$
\mathrm{N}<10
$$

Above this N , the sum over all subleading diagrams becomes of order 20% of the leading answer

Squeezed and collinear Limits
 lim
 $k_{1} \rightarrow 0$

Correlation Functions can be enhanced in some small region of momentum spaces (near poles)

Squeezed (soft)
$\lim _{k_{1} \rightarrow 0}\left\langle\mathcal{R}^{5}\right\rangle_{\alpha-\text { leading }} \propto \frac{1}{k_{1}^{2} k^{10}}$

$$
\lim _{k_{1} \rightarrow 0}\left\langle\mathcal{R}^{5}\right\rangle_{\alpha-\text { subleading }} \propto \frac{1}{\alpha} \frac{1}{k_{1}^{3} k^{9}}
$$

Subleading by $1 / \alpha$ but enhanced by k / k_{1} which for CMB can be as large as 10^{3}

Squeezed and

 collinear LimitsCorrelation Functions can be enhanced in some small region of momentum spaces (near poles)

$$
B_{N}\left(k_{i}\right) \equiv \frac{1}{K^{N-3} \Pi_{i} k_{i}^{2}} \sin \left(\frac{\phi_{K}}{f}\right) \quad \lim _{k_{1} \rightarrow 0}\left\langle\mathcal{R}^{5}\right\rangle_{\alpha-\text { leading }} \propto \frac{1}{k_{1}^{2} k^{10}}
$$

Squeezed (soft)

$$
\lim _{k_{1} \rightarrow 0}\left\langle\mathcal{R}^{5}\right\rangle_{\alpha-\text { subleading }} \propto \frac{1}{\alpha} \frac{1}{k_{1}^{3} k^{9}}
$$

Subleading by $1 / \alpha$ but enhanced by k / k_{1} which for CMB can be as large as 10^{3}

Squeezed and

 collinear LimitsCorrelation Functions can be enhanced in some small region of momentum spaces (near poles)
\propto

Squeezed (soft)

$$
\lim _{k_{1} \rightarrow 0}\left\langle\mathcal{R}^{5}\right\rangle_{\alpha-\text { leading }} \propto \frac{1}{k_{1}^{2} k^{10}}
$$

$$
\lim _{k_{1} \rightarrow 0}\left\langle\mathcal{R}^{5}\right\rangle_{\alpha-\text { subleading }} \propto \frac{1}{\alpha} \frac{1}{k_{1}^{3} k^{9}}
$$

Subleading by $1 / \alpha$ but enhanced by k / k_{1} which for CMB can be as large as 10^{3}

Consistency relations

The squeezed mode acts as background modulating the lower point function

Main message: we can calculate the shape and amplitude around squeezed limit using this consistency relation and our α-leading results.

Collinear Limits $\quad \vec{k}_{1}+\vec{k}_{2} \rightarrow 0$

$$
\begin{aligned}
& \lim _{q=0}\left\langle\prod_{i=1}^{N} \mathcal{R}_{k_{k}}\right\rangle^{S E}=\left\langle\left\langle\prod_{i=1}^{n} \mathcal{R}_{k_{k}}\right\rangle_{R_{k}}\left\langle\prod_{i=1+1}^{N} \mathcal{R}_{k_{k}}\right\rangle_{R_{s}}\right\rangle \\
& =2 \epsilon\left(\mathcal{R}_{q} \mathcal{R}_{q^{\prime}}{ }^{\prime} \frac{\partial}{\partial \phi_{s}}\left\langle\prod_{i=1}^{n} \mathcal{R}_{\mathcal{k}_{i}}\right\rangle \frac{\partial}{\partial \phi_{*}}\left\langle\prod_{i=r+1}^{N} \mathcal{R}_{\mathbf{k}_{i}}\right\rangle\right. \\
& \frac{k^{3}}{\left|\vec{k}_{1}+\vec{k}_{2}\right|^{3}} \sim 10^{9}
\end{aligned}
$$

Using various consistency relations applied on the leading answers we can get the shape and amplitude at all squeezed / collinear limits.

Collinear limit of tensors

$$
k^{2} \rightarrow k^{a} k_{a}+k^{a} \gamma_{a b} k^{b}=k^{a} k_{a}-k_{a} \gamma^{a b} k_{b}
$$

$\lim _{q \rightarrow 0}\left\langle\prod_{i=1}^{N} \mathcal{R}_{\mathbf{k}_{i}}\right\rangle^{\prime G E}=\left|\gamma_{q}\right|^{2} \sum_{\{i, j\}=1}^{N_{1}-1} \sum_{\{l, m\}=1}^{N_{2}-1} E_{i j l m} \frac{\partial}{\partial\left(\mathbf{k}_{i} \cdot \mathbf{k}_{j}\right)}\left\langle\prod_{i=1}^{N_{1}} \mathcal{R}_{\mathbf{k}_{i}}\right\rangle^{\prime} \frac{\partial}{\partial\left(\mathbf{k}_{l} \cdot \mathbf{k}_{m}\right)}\left\langle\prod_{i=1}^{N_{2}} \mathcal{R}_{\mathbf{k}_{i}}\right\rangle^{\prime}$

$$
E_{i j l m}=k_{i} k_{j} k_{l} k_{m} \sin \theta_{i} \sin \theta_{j} \sin \theta_{l} \sin \theta_{m} \cos \left(\phi_{i}+\phi_{j}-\phi_{l}-\phi_{m}\right)
$$

Conclusions

* Decoupling limit is quite general and applies to any single field models with large NG.
* In resonant models of inflation we know higher N -point correlation functions that are valid for N up to 10 or more.

$$
B_{N}\left(k_{i}\right) \equiv \frac{1}{K^{N-3} \prod_{i} k_{i}^{2}} \sin \left(\frac{\phi_{K}}{f}\right)
$$

* Main limit are from the proliferation of Feynman diagrams.

* Consistency relations can be used to predict the correct behaviour in all sorts of squeezed or collinear limits. Our results may provide a test case to study NG beyond the bispectrum.

Trispectrum in collinear

$$
\left\langle\mathcal{R}_{\mathbf{k}_{1}} \cdots \mathcal{R}_{\mathbf{k}_{4}}\right\rangle^{\text {collinear }}=(2 \pi)^{3} \delta^{3}\left(\sum_{i=1}^{4} \mathbf{k}_{i}\right)\left\{\frac{A_{4}}{K \prod_{i} k_{i}^{2}}\left[\sin (a)-\frac{1}{\alpha} \cos (a) \sum_{j, i} \frac{k_{i}}{k_{j}}\right]\right.
$$

Trispectrum in collinear

$$
\left\langle\mathcal{R}_{\mathbf{k}_{1}} \cdots \mathcal{R}_{\mathbf{k}_{4}}\right\rangle^{\text {collinear }}=(2 \pi)^{3} \delta^{3}\left(\sum_{i=1}^{4} \mathbf{k}_{i}\right)\left\{\frac{A_{4}}{K \prod_{i} k_{i}^{2}}\left[\sin (a)-\frac{1}{\alpha} \cos (a) \sum_{j, i} \frac{k_{i}}{k_{j}}\right]\right.
$$

$$
+\frac{9}{16} r \sin ^{2} \theta_{1} \sin ^{2} \theta_{3} \cos \left[2\left(\phi_{1}+\phi_{3}\right)\right] \frac{\left(2 \pi^{2} \Delta_{R}^{2}\right)^{3}}{k_{12}^{3} k_{1}^{3} k_{3}^{3}}
$$

$$
+\frac{18 \pi b^{2} \alpha \sin ^{2}(a)\left(2 \pi^{2} \Delta_{R}^{2}\right)^{3}}{k_{12}^{3} k_{1}^{3} k_{3}^{3}}+\operatorname{perm}\left(\mathrm{k}_{13}, \mathrm{k}_{23}\right)
$$

