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This is a function of 
3N-6 variables  

Majority of theoretical studies have focused on the bispectrum

�Rk1Rk2Rk3� = (2π)3δ3 (k1 + k2 + k3)B(ki)

Here lets go way beyond..... 
Report a model where we have a good 
handle on N-point functions for N of 

order 10 to 25. 

�Rk1 · · ·RkN � = (2π)3δ3
�

N�

i

ki

�
BN (ki)

This is a nice toy model to learn about 
the structure of higher point 

correlation functions. 

One of the theme of this NG workshop is 
lets go beyond local bispectra τNL

e.g

Scale 
dependence
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The challenge for theorists

✤ The main bottleneck for predicting the standard model background at 
the LHC is coming from the theorist’s ability to compute higher point 
function in gauge theories. 

✤ Usually quite hard to calculate beyond the power spectrum in 
theories of inflation mostly because of gravity.

✤ Many bispectra are known, some trispectra (a lot of work) are out 
there and essentially nothing beyond. 

···

···

By decoupling gravity in a particular 
model of inflation we will obtain all 

correlation functions at tree level up to N 
of order 10, 12 or even ~25 !
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Slow-roll Trispectrum

Seery, Lidsey, Sloth
Arroja, Koyama

Seery, Sloth, Vernizzi
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Resonant Inflationary Models

Slow-roll potential 

V (φ)

φ

 b<< 1

α >> 1

Amplitude

Frequency

V (φ) = Vsr(φ) + Λ4 cos(φ/f)

Chen, Easther, Lim
Flauger, Pajer

Barnaby, Peloso
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Results �Rk1 · · ·RkN �single vertex = (2π)3δ3
�

N�

i

ki

�
ANBN (ki)

AN ≡ (−)N
3b
√
2π

2
α2N−9/2(2π2∆2

R)
N−1amplitude

shape

Signal oscillates
Essentially no overlap to most other shape.

leading

BN (ki) ≡
1

KN−3
�

i k
2
i

sin

�
φK

f

�

K =
�

i

ki

only a function of N variable (norms) and not 3N-6 
as one would naively expect. 

φK = φ∗ −
√
2�∗ lnK/k∗
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α
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j,i

ki
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+O(α−2)





leading + 1/α

only a function of N variable (norms) and not 3N-6 
as one would naively expect. 

φK = φ∗ −
√
2�∗ lnK/k∗
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gµνgµν

gµν gµν

δφ

δφ δφ

δφ

hij δφ+gµν →

Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore

R = −H

φ̇
δφ

Self-interactions of the field 
φ dominate over all 

gravitational interactions.

Claim: All single field models of inflation 
with parametrically large NG admit a 

decoupling limit  in which 

Decoupling

V (φ) = 3αbf2
H

2 cos(φ/f)

V (N)

N !
δφ(x)NVertices

For Resonant
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�
R5

�
→

✤ Neglecting Gravity

✤ Multi-vertex diagrams.

✤ Special choice of momenta.

BN (ki) ≡
1

KN−3
�

i k
2
i



sin
�
φK

f

�
− 1

α
cos

�
φK

f

��

j,i

ki
kj

+O(α−2)





Gravity kicks 
in here

Limit of validity

�Rk1 · · ·RkN �single vertex
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Any single field model of 
inflation with large NG 

decouples

But for most of the models, there are

Many contact terms

∼

e.g. DBI inflation

Chen, Huang, Shiu
Arroja, Mizuno, Koyama, Tanaka

L.L. Shandera

DBI
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Multi-vertex diagrams

Starting with 4-pt, there exists multi-vertex diagrams.  

they are subleading (more b and suppressed in α) 
but there is many of them  

really a lot of terms

For  α~ 100 and 
b~0.1

we estimate that the 
SUM of all multi-
vertex contribute 
less than 20% for 

N< 10

1st problem
and most serious
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Maximum N for which 
our formula can be trusted

Above this N, the sum over all subleading diagrams 
becomes of order 20% of the leading answer
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Squeezed and 
collinear Limits

Correlation Functions 
can be enhanced

 in some small region of 
momentum spaces (near 

poles)

k2

k3k4

k5

k1

lim
k1→0

Squeezed (soft)

BN (ki) ≡
1

KN−3
�

i k
2
i

sin

�
φK

f

�
lim
k1→0

�
R5

�
α−leading

∝ 1

k21k
10

lim
k1→0

�
R5

�
α−subleading

∝ 1

α

1

k31k
9

Subleading by 1/α but enhanced by k/k1 which for CMB can be as large as 103

2nd Problem
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The squeezed mode acts as background 
modulating the lower point function

Consistency relations

lim
k1→0

�
Rk1R4

k

�
= (2π)3δ3(K)

√
2�|Rk1 |2

∂

∂φ∗

�
R4

k

�

Main message: we can calculate the shape and amplitude 
around squeezed limit using this consistency relation and 

our α-leading results.

�
N�

i=1

Rki

�

RB

=

�
N�

i=1

Rki

�

RB=0

+RB

�
∂

∂RB

�
N�

i=1

Rki

�

RB

�

RB=0

+O
�
R

2
B

�

Maldacena
Creminelli, Zaldarriaga

more recently
Ganc, Komatsu
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Collinear Limits

Using various consistency relations applied on the leading answers we 
can get the shape and amplitude at all squeezed/collinear limits. 

lim
q→0

�
N�

i=1

Rki

�SE

=

��
r�

i=1

Rki

�

Rq

�
N�

i=r+1

Rki

�

Rq�

�

= 2� �Rq�Rq��
∂

∂φ∗

�
r�

i=1

Rki

�
∂

∂φ∗

�
N�

i=r+1

Rki

�

similar for tensors

�k1 + �k2 → 0

k3

|�k1 + �k2|3
∼ 109

14



Leblond, NG2011, MCTP

lim
q→0

�
N�

i=1

Rki

��GE

= |γq|2
N1−1�

{i,j}=1

N2−1�

{l,m}=1

Eijlm
∂

∂(ki · kj)

�
N1�

i=1

Rki

��
∂

∂(kl · km)

�
N2�

i=1

Rki

��

Collinear limit of tensors

Eijlm = kikjklkm sin θi sin θj sin θl sin θm cos(φi + φj − φl − φm)

k2 → kaka + kaγabk
b = kaka − kaγ

abkb
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✤ Decoupling limit is quite general and applies 
to any single field models with large NG.

✤ In resonant models of inflation we know 
higher N-point correlation functions that are 
valid for N up to 10 or more. 

✤ Main limit are from the proliferation 
of Feynman diagrams.

Conclusions

✤ Consistency relations can be used to predict 
the correct behaviour in all sorts of squeezed 
or collinear limits. Our results may provide a 
test case to study NG beyond the bispectrum.

BN (ki) ≡
1

KN−3
�

i k
2
i

sin

�
φK

f

�
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�Rk1 · · ·Rk4�
collinear = (2π)3δ3

�
4�

i=1

ki

�



A4

K
�
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sin (a)− 1

α
cos (a)

�
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Trispectrum in collinear
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+
9

16
r sin2 θ1 sin

2 θ3 cos [2(φ1 + φ3)]
(2π2∆2

R)
3

k312k
3
1k

3
3

+
18πb2α sin2(a)(2π2∆2

R)
3

k312k
3
1k

3
3

+ perm(k13, k23)

Trispectrum in collinear
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